Biomedical applications of soft robotics

Soft robotics enables the design of soft machines and devices at different scales. The compliance and mechanical properties of soft robots make them especially interesting for medical applications. Depending on the level of interaction with humans, different levels of biocompatibility and biomimicry are required for soft materials used in robots. In this Review, we investigate soft robots for biomedical applications, including soft tools for surgery, diagnosis and drug delivery, wearable and assistive devices, prostheses, artificial organs and tissue-mimicking active simulators for training and biomechanical studies. We highlight challenges regarding durability and reliability, and examine traditional and novel soft and active materials as well as different actuation strategies. Finally, we discuss future approaches and applications in the field.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

133,45 € per year

only 11,12 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Bioinspired electronics for intelligent soft robots

Article 05 August 2024

Soft actuators for real-world applications

Article 10 November 2021

Untethered soft actuators for soft standalone robotics

Article Open access 25 April 2024

References

  1. Wang, L. & Iida, F. Deformation in soft-matter robotics: a categorization and quantitative characterization. IEEE Robot. Autom. Mag.22, 125–139 (2015). ArticleGoogle Scholar
  2. Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robot.1, eaah3690 (2016). ArticleGoogle Scholar
  3. Cianchetti, M. & Laschi, C. Pleasant to the Touch: By emulating nature, scientists hope to find innovative new uses for soft robotics in health-care technology. IEEE Pulse7, 34–37 (2016). ArticleGoogle Scholar
  4. McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science347, 1261689 (2015). ArticleGoogle Scholar
  5. Manti, M., Cacucciolo, V. & Cianchetti, M. Stiffening in soft robotics: a review of the state of the art. IEEE Robot. Autom. Mag.23, 93–106 (2016). ArticleGoogle Scholar
  6. Pfeifer, R., Lungarella, M. & Iida, F. The challenges ahead for bio-inspired ‘soft’ robotics. Commun. ACM55, 76 (2012). ArticleGoogle Scholar
  7. Rané, A., Tan, G. Y. & Tewari, A. K. Laparo-endoscopic single-site surgery in urology: is robotics the missing link? BJU Int.104, 1041–1043 (2009). ArticleGoogle Scholar
  8. Vitiello, V., Lee, S.-L., Cundy, T. P. & Yang, G.-Z. Emerging robotic platforms for minimally invasive surgery. IEEE Rev. Biomed. Eng.6, 111–126 (2013). ArticleGoogle Scholar
  9. Vyas, L., Aquino, D., Kuo, C.-H., Dai, J. S. & Dasgupta, P. Flexible robotics. BJU Int.107, 187–189 (2011). ArticleGoogle Scholar
  10. Loeve, A., Breedveld, P. & Dankelman, J. Scopes too flexible…and too stiff. IEEE Pulse1, 26–41 (2010). ArticleGoogle Scholar
  11. Le, H. M., Do, T. N. & Phee, S. J. A survey on actuators-driven surgical robots. Sens. Actuators A Phys.247, 323–354 (2016). ArticleGoogle Scholar
  12. Ikuta, K., Tsukamoto, M. & Hirose, S. in Proceedings. 1988 IEEE International Conference on Robotics and Automation 427–430 (Philadelphia, PA, USA, 1988).
  13. Menciassi, A. et al. Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract. J. Micromech. Microeng.15, 2045–2055 (2005). ArticleGoogle Scholar
  14. Robinson, G. & Davies, J. B. C. in Proceedings 1999 IEEE International Conference on Robotics and Automation 2849–2854 (Detroit, MI, USA, 1999).
  15. Burgner-Kahrs, J., Caleb Rucker, D. & Choset, H. Continuum robots for medical applications: a survey. IEEE Trans. Rob.31, 1261–1280 (2015). ArticleGoogle Scholar
  16. Polygerinos, P. et al. Soft Robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater.19, 1700016 (2017). ArticleGoogle Scholar
  17. Phee, L. et al. Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans. Biomed. Eng.49, 613–616 (2002). ArticleGoogle Scholar
  18. Bertetto, A. M. et al. A novel fluidic bellows manipulator. J. Robot. Mechatron.16, 604–612 (2004). ArticleGoogle Scholar
  19. Volder, M. D. et al. Production and characterization of a hydraulic microactuator. J. Micromech. Microeng.15, S15–S21 (2005). ArticleGoogle Scholar
  20. Howell, L. L., Magleby, S. P. & Olsen, B. M. Handbook of Compliant Mechanisms. (John Wiley & Sons, 2013).
  21. De Greef, A., Lambert, P. & Delchambre, A. Towards flexible medical instruments: review of flexible fluidic actuators. Precis. Eng.33, 311–321 (2009). ArticleGoogle Scholar
  22. Comber, D. B., Slightam, J. E., Gervasi, V. R., Neimat, J. S. & Barth, E. J. Design, additive manufacture, and control of a pneumatic MR-compatible needle driver. IEEE Trans. Rob.32, 138–149 (2016). ArticleGoogle Scholar
  23. Suzumori, K. Elastic materials producing compliant robots. Rob. Auton. Syst.18, 135–140 (1996). ArticleGoogle Scholar
  24. Suzumori, K., Koga, A., Kondo, F. & Haneda, R. Integrated flexible microactuator systems. Robotica14, 493 (1996). ArticleGoogle Scholar
  25. Ranzani, T., Gerboni, G., Cianchetti, M. & Menciassi, A. A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim.10, 035008 (2015). ArticleGoogle Scholar
  26. Arezzo, A. et al. Total mesorectal excision using a soft and flexible robotic arm: a feasibility study in cadaver models. Surg. Endosc.31, 264–273 (2016). ArticleGoogle Scholar
  27. Konishi, S., Kawai, F. & Cusin, P. Thin flexible end-effector using pneumatic balloon actuator. Sens. Actuators A Phys.89, 28–35 (2001). ArticleGoogle Scholar
  28. Noritsugu, T. et al. Development of pneumatic rotary soft actuator made of silicone rubber. J. Robot. Mechatron.13, 17–22 (2001). ArticleGoogle Scholar
  29. Yang, Q. et al. in IEEE Conference on Robotics, Automation and Mechatronics, 2004https://doi.org/10.1109/RAMECH.2004.1438950 (Singapore, 2004).
  30. Suzumori, K., Iikura, S. & Tanaka, H. in [1991] Proceedings. IEEE Micro Electro Mechanical Systems 204–209 (Nara, Japan, 1991).
  31. Low, J.-H., Delgado-Martinez, I. & Yeow, C.-H. Customizable soft pneumatic chamber–gripper devices for delicate surgical manipulation. J. Med. Device.8, 044504 (2014). ArticleGoogle Scholar
  32. Gerboni, G. et al. A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper. Smart Mater. Struct.25, 105025 (2016). ArticleGoogle Scholar
  33. Ranzani, T., Cianchetti, M., Gerboni, G., De Falco, I. & Menciassi, A. A. Soft modular manipulator for minimally invasive surgery: design and characterization of a single module. IEEE Trans. Rob.32, 187–200 (2016). ArticleGoogle Scholar
  34. Lazeroms, M. et al. A hydraulic forceps with force-feedback for use in minimally invasive surgery. Mechatronics6, 437–446 (1996). ArticleGoogle Scholar
  35. Gerboni, G. et al. Modular soft mechatronic manipulator for minimally invasive surgery (MIS): overall architecture and development of a fully integrated soft module. Meccanica50, 2865–2878 (2015). ArticleGoogle Scholar
  36. Moers, A. J. M., De Volder, M. F. L. & Reynaerts, D. Integrated high pressure microhydraulic actuation and control for surgical instruments. Biomed. Microdevices14, 699–708 (2012). ArticleGoogle Scholar
  37. Ikuta, K., Ichikawa, H., Suzuki, K. & Yamamoto, T. in 2003 IEEE International Conference on Robotics and Automationhttps://doi.org/10.1109/robot.2003.1241991 (Taipei, Taiwan, 2004)
  38. Ruzzu, A., Bade, K., Fahrenberg, J. & Maas, D. Positioning system for catheter tips based on an active microvalve system. J. Micromech. Microeng.8, 161–164 (1998). ArticleGoogle Scholar
  39. Sun, Y., Song, S., Liang, X. & Ren, H. A. Miniature soft robotic manipulator based on novel fabrication methods. IEEE Robot. Autom. Lett.1, 617–623 (2016). ArticleGoogle Scholar
  40. Gorissen, B., Vincentie, W., Al-Bender, F., Reynaerts, D. & De Volder, M. Modeling and bonding-free fabrication of flexible fluidic microactuators with a bending motion. J. Micromech. Microeng.23, 045012 (2013). ArticleGoogle Scholar
  41. Diodato, A. et al. Soft robotic manipulator for improving dexterity in minimally invasive surgery. Surg. Innov.25, 69–76 (2018). ArticleGoogle Scholar
  42. Karki, S. et al. Thin films as an emerging platform for drug delivery. Asian J. Pharm. Sci.11, 559–574 (2016). ArticleGoogle Scholar
  43. Borodkin, S. & Tucker, F. E. Drug release from hydroxypropyl cellulose-polyvinyl acetate films. J. Pharm. Sci.63, 1359–1364 (1974). ArticleGoogle Scholar
  44. Fusco, S. et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv. Mater.26, 952–957 (2014). ArticleGoogle Scholar
  45. Breger, J. C. et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl. Mater. Interfaces7, 3398–3405 (2015). ArticleGoogle Scholar
  46. Ricotti, L. et al. Biohybrid actuators for robotics: A review of devices actuated by living cells. Sci. Robot.2, eaaq0495 (2017). ArticleGoogle Scholar
  47. Tefertiller, C., Pharo, B., Evans, N. & Winchester, P. Efficacy of rehabilitation robotics for walking training in neurological disorders: a review. J. Rehabil. Res. Dev.48, 387–416 (2011). ArticleGoogle Scholar
  48. Herr, H. M. & Kornbluh, R. D. in Proc. SPIE 5385, Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD)https://doi.org/10.1117/12.544510 (San Diego, CA, USA, 2004).
  49. Gordon, K. E., Sawicki, G. S. & Ferris, D. P. Mechanical performance of artificial pneumatic muscles to power an ankle–foot orthosis. J. Biomech.39, 1832–1841 (2006). ArticleGoogle Scholar
  50. do Nascimento, B. G., Vimieiro, C. B. S., Nagem, D. A. P. & Pinotti, M. Hip orthosis powered by pneumatic artificial muscle: voluntary activation in absence of myoelectrical signal. Artif. Organs32, 317–322 (2008). ArticleGoogle Scholar
  51. Kawamura, T., Takanaka, K., Nakamura, T. & Osumi, H. in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)https://doi.org/10.1109/ICORR.2013.6650350 (Seattle, WA, USA, 2013).
  52. Pittaccio, S. et al. SHADE: a shape-memory-activated device promoting ankle dorsiflexion. J. Mater. Eng. Perform.18, 824–830 (2009). ArticleGoogle Scholar
  53. Pittaccio, S. & Viscuso, S. An EMG-controlled SMA device for the rehabilitation of the ankle joint in post-acute stroke. J. Mater. Eng. Perform.20, 666–670 (2011). ArticleGoogle Scholar
  54. Stirling, L. et al. Applicability of shape memory alloy wire for an active, soft orthotic. J. Mater. Eng. Perform.20, 658–662 (2011). ArticleGoogle Scholar
  55. Park, Y.-L. et al. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspir. Biomim.9, 016007 (2014). ArticleGoogle Scholar
  56. Wehner, M. et al. in 2013 IEEE International Conference on Robotics and Automation 3362–3369 (Karlsruhe, Germany, 2013).
  57. Asbeck, A. T., De Rossi, S. M. M., Holt, K. G. & Walsh, C. J. A biologically inspired soft exosuit for walking assistance. Int. J. Rob. Res.34, 744–762 (2015). ArticleGoogle Scholar
  58. Awad, L. N. et al. A soft robotic exosuit improves walking in patients after stroke. Sci. Transl Med.9, eaai9084 (2017). ArticleGoogle Scholar
  59. Mengüç, Y. et al. Wearable soft sensing suit for human gait measurement. Int. J. Rob. Res.33, 1748–1764 (2014). ArticleGoogle Scholar
  60. Tsagarakis, N. G. & Caldwell, D. G. Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Autonom. Robots15, 21–33 (2003). ArticleGoogle Scholar
  61. Villoslada, A., Flores, A., Copaci, D., Blanco, D. & Moreno, L. High-displacement flexible shape memory alloy actuator for soft wearable robots. Rob. Auton. Syst.73, 91–101 (2015). ArticleGoogle Scholar
  62. Copaci, D., Cano, E., Moreno, L. & Blanco, D. New design of a soft robotics wearable elbow exoskeleton based on shape memory alloy wire actuators. Appl. Bion. Biomech.2017, 1605101 (2017). Google Scholar
  63. Galiana, I., Hammond, F. L., Howe, R. D. & Popovic, M. B. in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 317–322 (Vilamoura, Portugal, 2012).
  64. Natividad, R. F. & Yeow, C. H. in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) 989–993 (Singapore, 2016).
  65. Kim, D. H., Heo, S.-H. & Park, H.-S. in 2017 International Conference on Rehabilitation Robotics (ICORR) 1326–1330 (London, UK, 2017).
  66. Maeder-York, P. et al. Biologically inspired soft robot for thumb rehabilitation. J. Med. Device.8, 020934 (2014). ArticleGoogle Scholar
  67. Carpi, F., Mannini, A. & De Rossi, D. Proc. SPIE 6927, Electroactive Polymer Actuators and Devices (EAPAD) 2008https://doi.org/10.1117/12.774644 (San Diego, CA, USA, 2008).
  68. Delph, M. A. et al. in 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)https://doi.org/10.1109/ICORR.2013.6650426 (Seattle, WA, USA, 2013).
  69. In, H., Kang, B. B., Sin, M. & Cho, K.-J. Exo-Glove: a wearable robot for the hand with a soft tendon routing system. IEEE Robot. Autom. Mag.22, 97–105 (2015). ArticleGoogle Scholar
  70. Kang, B. B. et al. in 2016 IEEE International Conference on Robotics and Automation (ICRA) 3750–3755 (Stockholm, Sweden, 2016).
  71. Connelly, L. et al. A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans. Neural Syst. Rehabil. Eng.18, 551–559 (2010). ArticleGoogle Scholar
  72. Guo, S. et al. in 2015 IEEE International Conference on Mechatronics and Automation (ICMA) 2197–2202 (Beijing, China, 2015).
  73. Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. & Walsh, C. J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst.73, 135–143 (2015). ArticleGoogle Scholar
  74. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. Int. Ed.50, 1890–1895 (2011). ArticleGoogle Scholar
  75. Yeo, J. C. et al. Flexible and stretchable strain sensing actuator for wearable soft robotic applications. Adv. Mater. Technol.1, 1600018 (2016). ArticleGoogle Scholar
  76. Yap, H. K., Lim, J. H., Nasrallah, F. & Yeow, C.-H. Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Front. Neurosci.11, 547 (2017). ArticleGoogle Scholar
  77. Manto, M. et al. Dynamically responsive intervention for tremor suppression. IEEE Eng. Med. Biol. Mag.22, 120–132 (2003). ArticleGoogle Scholar
  78. Ansari, Y. et al. Towards the development of a soft manipulator as an assistive robot for personal care of elderly people. Int. J. Adv. Rob. Syst.14, 172988141668713 (2017). ArticleGoogle Scholar
  79. Pfeifer, R. & Bongard, J. How the Body Shapes the Way We Think: A New View of Intelligence. (MIT Press, 2006).
  80. Deimel, R. & Brock, O. A novel type of compliant and underactuated robotic hand for dexterous grasping. Int. J. Rob. Res.35, 161–185 (2015). ArticleGoogle Scholar
  81. Galloway, K. C. et al. Soft robotic grippers for biological sampling on deep reefs. Soft Robot.3, 23–33 (2016). ArticleGoogle Scholar
  82. Mutlu, R., Alici, G., in het Panhuis, P. & Spinks, G. M. 3D printed flexure hinges for soft monolithic prosthetic fingers. Soft Robot.3, 120–133 (2016). ArticleGoogle Scholar
  83. Thompson-Bean, E., Das, R. & McDaid, A. Methodology for designing and manufacturing complex biologically inspired soft robotic fluidic actuators: prosthetic hand case study. Bioinspir. Biomim.11, 066005 (2016). ArticleGoogle Scholar
  84. Cheng, N. et al. Prosthetic jamming terminal device: a case study of untethered soft robotics. Soft Robot.3, 205–212 (2016). ArticleGoogle Scholar
  85. Ogawa, A., Obinata, G., Hase, K., Dutta, A. & Nakagawa, M. in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 330–333 (Vancouver, BC, Canada, 2008).
  86. Paterno, L., Ibrahimi, M., Gruppioni, E., Menciassi, A. & Ricotti, L. Sockets for limb prostheses: a review of existing technologies and open challenges. IEEE Trans. Biomed. Engineer. https://doi.org/10.1109/TBME.2017.2775100 (2018).
  87. Roche, E. T. et al. A bioinspired soft actuated material. Adv. Mater.26, 1200–1206 (2014). ArticleGoogle Scholar
  88. Roche, E. T. et al. Soft robotic sleeve supports heart function. Sci. Transl Med.9, eaaf3925 (2017). ArticleGoogle Scholar
  89. Payne, C. J. et al. An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Robot.4, 241–250 (2017). Google Scholar
  90. Horvath, M. A. et al. An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Ann. Biomed. Eng.45, 2222–2233 (2017). ArticleGoogle Scholar
  91. Cohrs, N. H. et al. A soft total artificial heart-first concept evaluation on a hybrid mock circulation. Artif. Organs41, 948–958 (2017). ArticleGoogle Scholar
  92. Schumacher, C. M., Loepfe, M., Fuhrer, R., Grass, R. N. & Stark, W. J. 3D printed lost-wax casted soft silicone monoblocks enable heart-inspired pumping by internal combustion. RSC Adv.4, 16039–16042 (2014). ArticleGoogle Scholar
  93. Mac Murray, B. C. et al. Poroelastic foams for simple fabrication of complex soft robots. Adv. Mater.27, 6334–6340 (2015). ArticleGoogle Scholar
  94. Irwin, D. E., Kopp, Z. S., Agatep, B., Milsom, I. & Abrams, P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. BJU Int.108, 1132–1138 (2011). ArticleGoogle Scholar
  95. Chonan, S. et al. Development of an artificial urethral valve using SMA actuators. Smart Mater. Struct.6, 410–414 (1997). ArticleGoogle Scholar
  96. Weiss, F. M., Deyhle, H., Kovacs, G. & Müller, B. in Proc. SPIE 8340, Electroactive Polymer Actuators and Devices (EAPAD) 2012https://doi.org/10.1117/12.914649 (San Diego, CA, USA, 2012).
  97. Hached, S. et al. Novel, wirelessly controlled, and adaptive artificial urinary sphincter. IEEE/ASME Trans. Mechatron.20, 3040–3052 (2015). ArticleGoogle Scholar
  98. Lamraoui, H. et al. Development of a novel artificial urinary sphincter: a versatile automated device. IEEE/ASME Trans. Mechatron.15, 916–924 (2010). Google Scholar
  99. Baldoli, I. et al. A novel simulator for mechanical ventilation in newborns: MEchatronic REspiratory System SImulator for Neonatal Applications. Proc. Inst. Mech. Eng. H229, 581–591 (2015). ArticleGoogle Scholar
  100. Kim, S., Kim, P., Park, C.-Y. & Choi, S.-B. A new tactile device using magneto-rheological sponge cells for medical applications: experimental investigation. Sens. Actuators A Phys.239, 61–69 (2016). ArticleGoogle Scholar
  101. Someya, Y. et al. in 2016 International Symposium on Micro-NanoMechatronics and Human Science (MHS)https://doi.org/10.1109/MHS.2016.7824208 (Nagoya, Japan, 2016).
  102. Manti, M., Cianchetti, M., Nacci, A., Ursino, F. & Laschi, C. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 3623–3626 (2015).
  103. Zhu, M., Xu, W. & Cheng, L. K. Esophageal peristaltic control of a soft-bodied swallowing robot by the central pattern generator. IEEE/ASME Trans. Mechatron.22, 91–98 (2017). ArticleGoogle Scholar
  104. Lu, X., Xu, W. & Li, X. A. Soft robotic tongue — mechatronic design and surface reconstruction. IEEE/ASME Trans. Mechatron.22, 2102–2110 (2017). ArticleGoogle Scholar
  105. Wehner, M. et al. Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robot.1, 263–274 (2014). ArticleGoogle Scholar
  106. Roseman, J. M. et al. Hybrid integrated biological–solid-state system powered with adenosine triphosphate. Nat. Commun.6, 10070 (2015). ArticleGoogle Scholar
  107. Menciassi, A. Swell findings in hydrogels. N. Engl. J. Med.378, 864–865 (2018). ArticleGoogle Scholar

Acknowledgements

The authors acknowledge support from the European Commission through the Hybrid Heart (#767195) and I-SUPPORT (#643666) projects.