Generalized Estimating Equations

Generalized estimating equations (GEE) provide a comparatively simple approach to dependent Gaussian and non-Gaussian outcomes. In particular, they are commonly used with repeated measures. This technique is appealing when the target of inference is population-averaged (marginal) quantities, such as, for example, the difference in time evolution between two or more groups. Apart from standard GEE, a number of variations to the theme are presented. The technique can be applied to randomized experiments, observational studies, survey data, etc. A clinical trial example and an analysis of data from a developmental toxicity study illustrate the methodology.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Similar content being viewed by others

Generalized Estimating Equations
Chapter © 2014

Generalized Estimating Equation
Chapter © 2017

Assessing the robustness of estimators when fitting Poisson inverse Gaussian models
Article 04 June 2018
References
- Aerts M, Geys H, Molenberghs G, Ryan LM (2002) Topics in modelling of clustered binary data. Chapman & Hall, London BookGoogle Scholar
- Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723 ArticleGoogle Scholar
- Bahadur RR (1961) A representation of the joint distribution of responses to n dichotomous items. In: Solomon H (ed) Studies in item analysis and prediction. Stanford mathematical studies in the social sciences VI. Stanford University Press, Stanford Google Scholar
- Barnett AG, Koper N, Dobson AJ, Schmiegelow F, Manseau M (2010) Using information criteria to select the correct variance-covariance structure for longitudinal data in ecology. Methods Ecol Evol 1:15–24 ArticleGoogle Scholar
- Breslow NE, Clayton DG (1993) Approximate inference in generalized linear mixed models. J Am Stat Assoc 88:9–25 Google Scholar
- Carey VC, Zeger SL, Diggle PJ (1993) Modelling multivariate binary data with alternating logistic regressions. Biometrika 80:517–526 ArticleGoogle Scholar
- Crowder M (1995) On the use of a working correlation matrix in using generalized linear models for repeated measurements. Biometrika 82:407–410 ArticleGoogle Scholar
- De Backer M, De Keyser P, De Vroey C, Lesaffre E (1996) A 12 week treatment for dermatophyte toe onychomycosis: terbinafine 250 mg/day vs. itraconazole 200 mg/day–a double-blind comparative trial. Br J Dermatol 134:16–17 ArticlePubMedGoogle Scholar
- Diggle PJ, Heagerty P, Liang K-Y, Zeger SL (2002) Analysis of longitudinal data. Oxford University Press, New York Google Scholar
- Engel B, Keen A (1994) A simple approach for the analysis of generalized linear mixed models. Statistica Neerlandica 48:1–22 ArticleGoogle Scholar
- Fitzmaurice GM, Laird NM (1993) A likelihood-based method for analysing longitudinal binary responses. Biometrika 80:141–151 ArticleGoogle Scholar
- Fitzmaurice GM, Laird NM, Rotnitzky A (1993) Regression models for discrete longitudinal responses. Stat Sci 8:284–309 Google Scholar
- Fitzmaurice GM, Laird NM, Ware JH (2004) Applied longitudinal analysis. Wiley, New York Google Scholar
- Geys H, Molenberghs G, Ryan LM (1999) Pseudolikelihood modeling of multivariate outcomes in developmental toxicology. J Am Stat Assoc 94:734–745 ArticleGoogle Scholar
- Hardin JW, Hilber JM (2003) Generalized estimating equations. Chapman & Hall, New York Google Scholar
- Heagerty PJ, Zeger SL (1996) Marginal regression models for clustered ordinal measurements. J Am Stat Assoc 91:1024–1036 ArticleGoogle Scholar
- Laird NM, Ware JH (1982) Random effects models for longitudinal data. Biometrics 28:963–974 ArticleGoogle Scholar
- Liang K-Y, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22 ArticleGoogle Scholar
- Liang K-Y, Zeger SL, Qaqish B (1992) Multivariate regression analyses for categorical data. J R Stat Soc Ser B 54:3–40 Google Scholar
- Lipsitz SR, Fitzmaurice GM (2009) Generalized estimating equations for longitudinal data analysis. In: Fitzmaurice GM, Davidian M, Verbeke G, Molenberghs G (eds) Longitudinal data analysis. Chapman & Hall, CRC Press, Boca Raton Google Scholar
- Lipsitz SR, Laird NM, Harrington DP (1991) Generalized estimating equations for correlated binary data: using the odds ratio as a measure of association. Biometrika 78:153–160 Google Scholar
- McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London BookGoogle Scholar
- Molenberghs G, Kenward MG (2007) Missing data in clinical studies. Wiley, New York BookGoogle Scholar
- Molenberghs G, Kenward MG (2010) Semi-parametric marginal models for hierarchical data and their corresponding full models. Comput Stat Data Anal 54:585–597 ArticleGoogle Scholar
- Molenberghs G, Lesaffre E (1994) Marginal modelling of correlated ordinal data using a multivariate Plackett distribution. J Am Stat Assoc 89:633–644 ArticleGoogle Scholar
- Molenberghs G, Lesaffre E (1999) Marginal modelling of multivariate categorical data. Stat Med 18:2237–2255 ArticleCASPubMedGoogle Scholar
- Molenberghs G, Ritter L (1996) Likelihood and quasi-likelihood based methods for analysing multivariate categorical data, with the association between outcomes of interest. Biometrics 52:1121–1133 ArticleCASPubMedGoogle Scholar
- Molenberghs G, Verbeke G (2005) Models for discrete longitudinal data. Springer, New York Google Scholar
- Molenberghs G, Kenward MG, Verbeke G, Efendi A, Iddi S (2013) On the connections between bridge distributions, marginalized multilevel models, and generalized linear mixed models. Int J Stat Probab 2:1–21 ArticleGoogle Scholar
- Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser B 135:370–384 Google Scholar
- Pan W (2001) Akaike’s information criterion in generalized estimating equations. Biometrics 57:120–125 ArticleCASPubMedGoogle Scholar
- Prentice RL (1988) Correlated binary regression with covariates specific to each binary observation. Biometrics 44:1033–1048 ArticleCASPubMedGoogle Scholar
- Prentice RL, Zhao LP (1991) Estimating equations for parameters in means and covariances of multivariate discrete and continuous responses. Biometrics 47:825–839 ArticleCASPubMedGoogle Scholar
- Roberts DT (1992) Prevalence of dermatophyte onychomycosis in the United Kingdom: results of an omnibus survey. Br J Dermatol 126(Suppl. 39):23–27 ArticlePubMedGoogle Scholar
- Rotnitzky A, Jewell NP (1990) Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data. Biometrika 77:485–497 ArticleGoogle Scholar
- Sutradhar BC, Das K (1999) On the efficiency of regression estimators in generalized linear models for longitudinal data. Biometrika 86:459–465 ArticleGoogle Scholar
- Tyl RW, Price CJ, Marr MC, Kimmel CA (1988) Developmental toxicity evaluation of dietary di(2-ethylhexyl)phthalate in Fischer 344 rats and CD-1 mice. Fundam Appl Toxicol 10:395–412 ArticleCASPubMedGoogle Scholar
- Verbeke G, Molenberghs G (2000) Linear mixed models for longitudinal data. Springer, New York Google Scholar
- Vonesh EF, Wang H, Majumdar D (2001) Generalized least squares, Taylor series linearization, and Fisher’s scoring in multivariate nonlinear regression. J Am Stat Assoc 96:282–291 ArticleGoogle Scholar
- Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61:439–447 Google Scholar
- Wolfinger R, O’Connell M (1993) Generalized linear mixed models: a pseudo-likelihood approach. J Stat Comput Simul 48:233–243 ArticleGoogle Scholar
- Zeger SL, Liang K-Y (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42:121–130 ArticleCASPubMedGoogle Scholar
- Zhao LP, Prentice RL (1990) Correlated binary regression using a quadratic exponential model. Biometrika 77:642–648 ArticleGoogle Scholar
Author information
Authors and Affiliations
- I-BioStat, Universiteit Hasselt & KU Leuven, Hasselt, Belgium Geert Molenberghs
- I-BioStat, KU Leuven & Universiteit Hasselt, Leuven, Belgium Geert Verbeke
- Selkirk, United Kingdom Michael G. Kenward
- Geert Molenberghs